A Network-Based Approach to Investigate the Pattern of Syndrome in Depression
نویسندگان
چکیده
In Traditional Chinese Medicine theory, syndrome is essential to diagnose diseases and treat patients, and symptom is the foundation of syndrome differentiation. Thus the combination and interaction between symptoms represent the pattern of syndrome at phenotypic level, which can be modeled and analyzed using complex network. At first, we collected inquiry information of 364 depression patients from 2007 to 2009. Next, we learned classification models for 7 syndromes in depression using naïve Bayes, Bayes network, support vector machine (SVM), and C4.5. Among them, SVM achieves the highest accuracies larger than 0.9 except for Yin deficiency. Besides, Bayes network outperforms naïve Bayes for all 7 syndromes. Then key symptoms for each syndrome were selected using Fisher's score. Based on these key symptoms, symptom networks for 7 syndromes as well as a global network for depression were constructed through weighted mutual information. Finally, we employed permutation test to discover dynamic symptom interactions, in order to investigate the difference between syndromes from the perspective of symptom network. As a result, significant dynamic interactions were quite different for 7 syndromes. Therefore, symptom networks could facilitate our understanding of the pattern of syndrome and further the improvement of syndrome differentiation in depression.
منابع مشابه
The Effectiveness of Cognitive-Behavioral Therapy based on Beck’s Pattern on Clinical Syndrome and Life Satisfaction in Patients with Major Depression
Introduction: The aim of this study was to evaluate the effectiveness of Cognitive-behavioral therapy based on Beck’s pattern on clinical syndrome and life satisfaction in patients with major depression Methods: This randomized clinical trial was performed on 24 patients with depression. Patients were randomly assigned into two groups of cognitive-behavioral therapy and control. Cognitive-behav...
متن کاملA New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)
Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...
متن کاملBrain Behavioral Systems, Early Maladaptive Schema, and Premenstrual in Mothers with Postpartum Depression Disorder
Introduction: The present study aimed to investigate brain-behavioral systems, early maladaptive schemas and premenstrual syndrome as predictors of postpartum blues. Methods: The present study was a descriptive correlational research. Study population included all referred females who diagnosed as mothers with postpartum depression in health centers of Mashahd city during 2018. A total sample o...
متن کاملProposing an effective approach for Network security and multimedia documents classically using encryption and watermarking
Local binary pattern (LBP) operators, which measure the local contrast within a pixel's neighborhood, successfully applied to texture analysis, visual inspection, and image retrieval. In this paper, we recommend a semi blind and informed watermarking approach. The watermark has been built from the original image using Weber Law. The approach aims is to present a high robustness and imperceptibi...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015